Типовик
Расчет цепей

Физика

Интегралы
На главную

Интегральное исчисление Оглавление

 

Экстремум функции нескольких переменных.

 

  Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой максимума.

  Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой минимума.

 Теорема. (Необходимые условия экстремума).

Если функция f(x,y) в точке (х0, у0) имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю , либо хотя бы одна из них не существует.

  Эту точку (х0, у0) будем называть критической точкой.

  Теорема. (Достаточные условия экстремума).

  Пусть в окрестности критической точки (х0, у0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:

1)      Если D(x0, y0) > 0, то в точке (х0, у0) функция f(x, y) имеет экстремум, если

 - максимум, если  - минимум.

2)      Если D(x0, y0) < 0, то в точке (х0, у0) функция f(x, y) не имеет экстремума

В случае, если D = 0, вывод о наличии экстремума сделать нельзя. обнинск песок купить описание у нас на сайте

 

Условный экстремум.

Экстремумы ФНП Примеры решения и оформления задач контрольной работы

  Условный экстремум находится, когда переменные х и у, входящие в функцию u = f( x, y), не являются независимыми, т.е. существует некоторое соотношение

j(х, у) = 0, которое называется уравнением связи.

  Тогда из переменных х и у только одна будет независимой, т.к. другая может быть выражена через нее из уравнения связи.

  Тогда u = f(x, y(x)).

В точках экстремума:

  =0 (1)

Кроме того:

  (2)

Умножим равенство (2) на число l и сложим с равенством (1).

 

 

 

  Для выполнения этого условия во всех точках найдем неопределенный коэффициент l так, чтобы выполнялась система трех уравнений:

  Полученная система уравнений является необходимыми условиями условного экстремума. Однако это условие не является достаточным. Поэтому при нахождении критических точек требуется их дополнительное исследование на экстремум.

  Выражение u = f(x, y) + lj(x, y) называется функцией Лагранжа.

  Пример. Найти экстремум функции f(x, y) = xy, если уравнение связи:

2x + 3y – 5 = 0

 

  Таким образом, функция имеет экстремум в точке .

Использование функции Лагранжа для нахождения точек экстремума функции называется также методом множителей Лагранжа.

Выше мы рассмотрели функцию двух переменных, однако, все рассуждения относительно условного экстремума могут быть распространены на функции большего числа переменных.

 

Элементы дискретной математики Элементы математической логики, теории множеств и общей алгебры. Дискретные объекты и структуры в математике. Метод математической индукции. Бинарные и n-арные отношения. Необходимые и достаточные условия. Логические (булевы) переменные. Алгебра логики, функции алгебры логики (булева алгебра, булевы функции). Множества, отображения, мощности. Алгебра множеств. Дизъюнктивные и конъюнктивные нормальные формы. Минимизация булевых функций. Функциональная полнота систем булевых функций. Понятие группы. Абелева группа. Подгруппы. Циклическая группа. Изоморфизмы, автоморфизмы, гомоморфизмы. Кольца, тела и поля.

Автошкола Мегаполис Без переплат: права на спецтехнику.

Энергетика

Черчение