Функции, пределы | Свежая информация: рестораны для свадьбы в питере - актуальная информация.. Производные и дифференциалы | Математический анализ | Интегральное исчисление | Дифференциальное исчисление Компьютерные сети | Передача дискретных данных | Базовые технологии | Архитектура ПК | Pascal учебник | Глобальные сети Среда WEB Язык HTML Построение локальных сетей Главная [an error occurred while processing this directive]

Дифференциальное исчисление функции Дифференциал

 

Параметрическое задание функции.

 

  Исследование и построение графика кривой, которая задана системой уравнений вида:

,

производится в общем то аналогично исследованию функции вида y = f(x).

Примеры решения задач курс лекций Интегрирование некоторых тригонометрических функций Интегральное исчисление.

  Находим производные:

Теперь можно найти производную . Далее находятся значения параметра t, при которых хотя бы одна из производных j¢(t) или y¢(t) равна нулю или не существует. Такие значения параметра t называются критическими.

  Для каждого интервала (t1, t2), (t2, t3), … , (tk-1, tk) находим соответствующий интервал (x1, x2), (x2, x3), … , (xk-1, xk) и определяем знак производной  на каждом из полученных интервалов, тем самым определяя промежутки возрастания и убывания функции.

  Далее находим вторую производную функции на каждом из интервалов и, определяя ее знак, находим направление выпуклости кривой в каждой точке.

  Для нахождения асимптот находим такие значения t, при приближении к которым или х или у стремится к бесконечности, и такие значения t, при приближении к которым и х и у стремится к бесконечности.

  В остальном исследование производится аналогичным также, как и исследование функции, заданной непосредственно.

 На практике исследование параметрически заданных функций осуществляется, например, при нахождении траектории движущегося объекта, где роль параметра t выполняет время.

 Ниже рассмотрим подробнее некоторые широко известные типы параметрически заданных кривых.

 

Уравнения некоторых типов кривых в параметрической форме.

 

 

Окружность.

 

 Если центр окружности находится в начале координат, то координаты любой ее

точки могут быть найдены по формулам: 

 

 

 

  0 £ t £ 3600

 

 

  Если исключить параметр t, то получим каноническое уравнение окружности:

 

x2 + y2 = r2(cos2t + sin2t) = r2

Эллипс.

 

Каноническое уравнение: .

  В

 

  C M(x, y)

 

 

 

  Для произвольной точки эллипса М(х, у) из геометрических соображений можно записать:  из DОВР и  из DOCN, где а- большая полуось эллипса, а b- меньшая полуось эллипса, х и у – координаты точки М.

 

  Тогда получаем параметрические уравнения эллипса:

 где  0 £ t £ 2p

Угол t называется эксцентрическим углом.

 

Циклоида.

 

 

 

  Определение. Циклоидой называется кривая, которую описывает некоторая точка, лежащая на окружности, когда окружность без скольжения катится по прямой.

 

Пусть окружность радиуса а перемещается без скольжения вдоль оси х. Тогда из геометрических соображений можно записать: OB = = atPB = MK = asint;

ÐMCB = t; Тогда y = MP = KB = CB – CK = a – acost = a(1 – cost).

x = at – asint = a(t – sint).

 

Итого:   при 0 £ t £ 2p - это параметрическое уравнение циклоиды.

Если исключить параметр, то получаем:

  Как видно, параметрическое уравнение циклоиды намного удобнее в использовании, чем уравнение, непосредственно выражающее одну координату через другую.

 

Астроида.

 

  Данная кривая представляет собой траекторию точки окружности радиуса R/4, вращающейся без скольжения по внутренней стороне окружности радиуса R.

 

 


 

  Параметрические уравнения, задающие изображенную выше кривую,

, 0 £ t £ 2p,

 

Преобразуя, получим: x2/3 + y2/3 = a2/3(cos2t + sin2t) = a2/3

 

Элементы дискретной математики Элементы математической логики, теории множеств и общей алгебры. Дискретные объекты и структуры в математике. Метод математической индукции. Бинарные и n-арные отношения. Необходимые и достаточные условия. Логические (булевы) переменные. Алгебра логики, функции алгебры логики (булева алгебра, булевы функции). Множества, отображения, мощности. Алгебра множеств. Дизъюнктивные и конъюнктивные нормальные формы. Минимизация булевых функций. Функциональная полнота систем булевых функций. Понятие группы. Абелева группа. Подгруппы. Циклическая группа. Изоморфизмы, автоморфизмы, гомоморфизмы. Кольца, тела и поля.