Задачи по теме Ядерные реакции

Символическая запись ядерной реакции

Задача 2.23 Определить отношение высоты центробежного барьера к высоте кулоновского барьера для α-частиц, испускаемых ядрами 209Ро, с орбитальным моментом l = 2. Закруглением вершины кулоновского барьера пренебречь.

Задача 2.24 Вычислить суммарную кинетическую энергию частиц, возникающих при β-распаде покоящегося нейтрона.

Задача 2.25 Как определяются энергии, освобождаемые при β--распаде, β+-распаде и К-захвате, если известны массы материнского и дочернего атомов и масса электрона. 

 Задача 2.26 Зная массу дочернего нуклида и энергию β-распада Q, найти массу нуклида:

Задача 2.27 Установить, возможны ли следующие процессы:

а) β--распад ядер 51V (-0,05602);

б) β+-распад ядер 39Са (-0,02929);

в) К-захват для ядер 63Zn (-0,06679).

Задача 2.28 Ядро 32Р испытало β-распад, в результате которого дочернее ядро оказалось непосредственно в основном состоянии. Определить максимальную кинетическую энергию β-частиц и соответствующую кинетическую энергию дочернего ядра.

Задача 2.29 Вычислить энергию γ-квантов, сопровождающих β-распад ядер 28Al

Задача 2.30 Изомерное ядро 81Sem с энергией возбуждения 103 кэВ переходит в основное состояние, испуская или γ-квант, или конверсионный электрон с К-оболочки (энергия связи К-электрона 12,7 кэВ). Найти скорость ядра отдачи в обоих случаях

Задача 2.31 Свободное ядро с энергией возбуждения Евозб = 129 кэВ переходит в основное состояние, испустив γ-квант. Найти изменение энергии γ-кванта относительно энергии возбуждения вследствие отдачи ядра.

Задача 2.32 С какой скоростью должны сближаться источник и поглотитель, состоящие из свободных ядер 191Ir, чтобы можно было наблюдать максимальное поглощение γ-квантов с энергией 129 кэВ.

Задача 2.33 В результате активации образовалось 10 радиоактивных ядер, период полураспада которых Т1/2 = 10 мин. Какова вероятность распада точно 5 ядер за время t = Т1/2?

Задача 2.34 Предполагается провести 2000 измерений активности препарата в течение одинаковых промежутков времени. Среднее число импульсов за время одного измерения равно 10,0. Считая время измерения малым по сравнению с периодом полураспада исследуемого радионуклида, определить число измерений, в которых следует ожидать точно 10 и 5 импульсов.

Задача 2.35 Среднее значение скорости счета импульсов от исследуемого радионуклида с большим периодом полураспада составляет 100,0 имп./мин. Определить вероятность получения 105 имп./мин. И вероятность того, что абсолютное отклонение от среднего числа имеет значение, большее 5,0 имп./мин.

Задача 2.36 Вычислить вероятность получения абсолютной погрешности измерения, превосходящей: а) σ и б) 2σ, где σ – среднеквадратичная погрешность.

Задача 2.37 Счетчик, находящийся в поле исследуемого излучения, зарегистрировал 3600 импульсов за 10 мин. Найти:

а) среднюю квадратичную погрешность в скорости счета;

a +A → C → b + B,

(3.1)

где С – составное ядро.

Энергетическая схема ядерной реакции:

,

(3.2)

которая протекает с образованием возбужденного промежуточного ядра , показана на рис. 3.1. На этом рисунке: и  сумма энергий покоя частиц до и после реакции, т.е. все массы выражены в энергетических единицах; - суммарные кинетические энергии частиц до и после реакции в СЦИ (система центра инерции); Q- энергия реакции:

;

(3.3)

и - энергии связи частиц a и b в промежуточном ядре . Экзоэнергетическая реакция представлена на схеме а); на схеме б) представлена эндоэнергетическая реакция.

Энергия, которая может быть передана для возбуждения промежуточного ядра С, образующегося в процессе (3.1):

,

(3.4)

εа(С) – энергия связи частицы а относительно промежуточного ядра С; - кинетическая энергия частицы а в СЦИ.

 

Частица с кинетической энергией Тα = 1,0 МэВ упруго рассеялась на покоящемся ядре 6Li

Нерелятивистский дейтон упруго рассеялся на покоящемся ядре под углом 30

Построить векторные диаграммы импульсов для упругого рассеяния нерелятивистской частицы на покоящемся ядре

Построение векторной диаграммы импульсов

Какую долю кинетической энергии теряет нерелятивистская частица при упругом рассеянии

Найти энергию реакции 7Li(p) 4He, если известно, что средняя энергия связи на один нуклон в ядрах 7Li и 4He равна соответственно 5,50 и 7,06 МэВ.

Из формулы (3.3) получаем выражение для вычисления энергии реакции:

Вычислить пороговую кинетическую энергию налетающей частицы в реакции p + 3H → 3He + n, если налетающей частицей является: а) протон; б) ядро трития (тритон).

Определить кинетическую энергию ядер 7Ве, возникающих в реакции p + 7Li → 7Be + n. Q = -1,65 МэВ.

Вычислить энергию реакции 14N(α, p)17O, если энергия налетающих α-частиц Т α = 4 МэВ, а протон, вылетевший под углом 30º к направлению движения α-частицы, имеет энергию Тр = 2,08 МэВ.

Получить выражение для импульса  частиц, возникающих в СЦИ в результате ядерной реакции (3.1), если энергия реакции Q, а энергия налетающей частицы а в ЛСК равна Та.

Определить кинетическую энергию ядер кислорода

Найти максимальную кинетическую энергию частиц, возникающих в результате реакции 16O(d, α)14N, Q = 3,1 МэВ при энергии бомбардирующих дейтонов 2,0 МэВ.

Определить ширину энергетического спектра нейтронов, возникающих в реакции 11B(α, n)14N, Q = 0,30 МэВ, если кинетическая энергия бомбардирующих α-частиц равна 5,0 МэВ.

Найти максимально возможные углы вылетаЛСК) продуктов реакции 9Be(p,n)9B, Q = -1,84 МэВ, если Тр = 4,00 МэВ.

Найти пороговую энергию квантов, при которой становится эндоэнергетическая реакция фоторасщепления покоящегося ядра массой М1, если энергия реакции равна Q.

Найти возможное значение спина основного состояния ядра 17О, возникающего в реакции срыва при взаимодействии дейтронов с ядрами 16О, если известно, что орбитальный момент захватываемых нейронов ln = 2.

Найти энергию возбуждения покоящегося ядра массой Мя, которую оно получит при захвате кванта с энергией Е

Определить энергию Евозб возбуждения ядра 4Не, возникшего в результате захвата протона с кинетической энергией 2,0 МэВ покоящимся ядром 3Н.

Какой минимальной кинетической энергией (Т n)min должен обладать нейтрон, чтобы в результате упругого рассеяния на ядре 9Ве сообщить последнему энергию возбуждения Евозб= 2,40 МэВ.

Найти кинетические энергии нейтронов, при которых сечения взаимодействия с ядрами 16О максимальны, если нижние уровни промежуточного ядра 17О соответствуют энергиям возбуждения 0,87; 3,00; 3,80; 4,54; 5,07 и 5,36 МэВ.

Определить среднее время жизни ядер, возникающих при захвате нейтронов ядрами 6Li, если известно среднее время жизни данных ядер по отношению к испусканию нейтронов и α-частиц: τ n = 1,1·1020 с и τ α = 2,2·1020 с

Найти плотность потока нейтронов на расстоянии 10 см от небольшого Ро-Ве–источника, содержащего 0,63·1010 Бк (0,17 Ки) 210Ро, если выход реакции 9Ве(α, n)12С равен 0,8·10-4.

Выход реакции при облучении медной пластинки толщиной d = 1,0 мм γ-квантами энергией 17 МэВ составляет Υ = 4,2·10-4.

Тонкую пластинку из 113Cd облучают тепловыми нейтронами, плотность потока которых 1,0·1012 с-1·см-2.

При облучении дейтонами с кинетической энергией 1 МэВ тонкой мишени из тяжелого льда выход и сечение реакции 2Н(d,n)3

При облучении толстой алюминиевой мишени пучком частиц с энергией 7,0 МэВ в результате реакции (α,n) испускается поток нейтронов 1,60·109 с-1.

Формула Брейта-Вигнера для изолированного уровня – сечение образования составного ядра при захвате нейтронов с = 0.

 

Математика, информатика, электротехника, сети - лекции, конспекты, задачи с решениями