Трехфазные цепи Линейные электрические цепи постоянного и переменного тока Переходные процессы в электрических цепях Расчет сложных цепей постоянного тока Метод узловых потенциалов

Задачи по электротехнике. Цепи постоянного и переменного тока. Трехфазные цепи

РАСЧЕТ СЛОЖНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Сложными называются разветвленные электрические цепи с несколькими источниками питания.

Универсальным методом анализа и расчета сложных цепей является метод непосредственного применения первого и второго законов Кирхгофа соответственно для узловых точек и замкнутых контуров.

Однако при значительном числе ветвей и узловых точек использование этого метода усложняется необходимостью совместного решения большого числа уравнений. В этих и некоторых других случаях может оказаться целесообразным применение иных методов расчета, основанных на тех же законах Кирхгофа. В зависимости от конфигурации расчетной схемы и поставленной задачи следует применять тот метод расчета, который в данном случае является наиболее эффективным.

Непосредственное применение законов Кирхгофа для расчета сложных цепей.

Все э.д.с, токи и сопротивления любой цепи связаны между собой уравнениями, выражающими законы Кирхгофа. Эти уравнения могут быть записаны, если известны не только величины э.д.с. и токов, но и их направления.

Если известными являются величины э.д.с. и их направления, а так же величины сопротивлений сложной цепи, то, применяя законы Кирхгофа, можно составить столько независимых уравнений, сколько различных неизвестных токов имеется в этой цепи. Однако для составления этих уравнений необходимо предварительно задаться произвольными направлениями неизвестных токов, которые принято считать положительными.

Если в результате решения составленной системы уравнений найденная величина тока имеет знак «плюс», то это означает, что его направление совпадает с ранее выбранным положительным направлением. В противном случае фактическое направление тока противоположно выбранному положительному направлению.

Для получения требуемого числа независимых уравнений следует применить первый закон Кирхгофа ко всем узловым точкам, кроме одной, т. е. составить (n—1) уравнений, если число узлов равно n. Недостающие уравнения должны быть составлены по второму закону Кирхгофа так, чтобы каждое следующее уравнение не могло быть получено из предыдущих.

Расчет сложной цепи при помощи уравнений Кирхгофа проводят в следующей последовательности:

1)  пo возможности упрощают расчетную схему (заменив, например, несколько параллельно  соединенных сопротивлений одним эквивалентным сопротивлением);

2) наносят на схеме известные направления э.д.с;

3) задаются произвольными положительными направлениями токов;

4) составляют уравнения по первому закону Кирхгофа для всех узловых точек схемы, кроме одной;

5) составляют недостающие уравнения  по второму закону Кирхгофа, обходя замкнутые контуры по часовой стрелке или против часовой стрелки. При этом э.д.с. и токи, совпадающие с направлением обхода, принимаются положительными, а э.д.с. с. и токи, противоположные (т. е. встречные) этому направлению, — отрицательными;

6) решают составленную систему уравнений и определяют неизвестные токи. Если некоторые значения токов получаются со знаком «минус»,  то это означает, что они имеют направления, обратные тем, которые были условно приняты для этих токов в начале расчета.

Необходимо отметить следующее: если в результате расчета сложной цепи фактическое направление тока в энергопреобразующем

устройстве (электрической машине или аккумуляторе) совпадает с направлением его э.д.с, то это свидетельствует о том, что рассматриваемое устройство работает в качестве источника электроэнергии, а не электроприемника. Если направление тока обратно направлению э.д.с, то это означает, что устройство является электроприемником. Для пояснения сказанного на рис. 1.11 приведена схема разряда (а) и заряда {6) аккумулятора. В схеме (а) аккумулятор работает как генератор, в схеме (б) он является потребителем электрической энергии.

В отдельных случаях могут быть заданы лишь некоторые значений э.д.с, токов и сопротивлений. Общее число неизвестных величин должно соответствовать возможному числу независимых уравнений, составляемых по законам Кирхгофа для рассматриваемой схемы. В таких случаях приходится в начале расчета задаваться положительными направлениями не только неизвестных токов, но и неизвестных э.д.с. (или напряжений).

Фактические направления этих э.д.с, напряжений и токов находятся в зависимости от полученного знака ( + или —) у каждой из величин, найденных в результате решения составленной системы уравнений.

Пример 1.2. Найти токораспределенне в схеме, изображенной на рис. 1.12,а. Исходные данные: E1=72 в, Е2 = 48 в, r1= 3 ом, r2=4 ом, r3 = 6 Ом, r4= 10 ом, r5= 15 ом.

Решение.  Предварительно упрощаем схему и находим эквивалентное сопротивление, заменяющее сопротивления: r3, r4, r5:

На упрощенной схеме (рис. 12. б) наносим заданные положительные направления э.д.с, Е1, и Е2 и произвольно намечаем направления неизвестных токов I1, I2, и I3. Применяя к этой схеме законы Кирхгофа, составляем три уравнения:

Решая эту систему уравнений, находим:

Полученный отрицательный знак у величины тока 12 означает, что в действительности этот ток направлен в противоположную сторону. Ток 13 распределяется между параллельными ветвями r4 и r5; обратно пропорционально этим сопротивлениям.

Задача 2.6

В цепи (рис. 2.12)  с-1, ,  [9].

Определить мгновенные значения u(t), iR(t), i(t). Построить частотные характеристики , .

Решение

Комплексная проводимость цепи

;  См;  См.

Так как , , , то  В,  А,  А.

Учитывая, что  См, находим  Ф. Тогда

,

.

На рис. 2.13 изображены характеристики  и .


Задача 2.7

Электротехника как наука теоретическая и прикладная вначале развивалась на основе постоянного тока, поскольку первыми источниками электрического тока были гальванические элементы. В этот период (1800 — 1850 гг.) были открыты основные закономерности электрических явлений: законы электрической цепи (Г. Ом и Г. Кирхгоф), тепловое действие электрического тока и его практическое использование (Э. Ленц, Д. Джоуль, 15. И. Петров), законы электромагнитной индукции и электромагнитных сил (М. Фарадей, Д. Максвелл, Э. Ленц, Л. Ампер, Б. С Якоби и др.), электрохимическое действие тока и т.д.

ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ В ПРОСТЕЙШЕЙ ЦЕПИ ПОСТОЯННОГО ТОКА Преобразование электрической энергии в тепловую. Электрическая мощность.

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА С ОДНИМ ИСТОЧНИКОМ ПИТАНИЯ Соединение источников и потребителей электроэнергии.

Задача Найти распределение токов в схеме.Метод узлового напряжения. Рассматриваемый метод расчета целесообразно применять к схеме, имеющей несколько параллельных ветвей, сходящихся в двух узловых точках, а также к, электрическим цепям, которые в результате несложных преображений могут быть приведены к схеме с двумя узлами.

Электрические цепи однофазного переменного тока

Активная, реактивная, и полная мощности При выборе трансформаторов, сечения кабелей, выключающей аппаратуры и т. п. необходимо знать, на какой ток они должны быть рассчитаны. Для этого недостаточно, если известны только напряжение и активная мощность Р, следует еще определить cos φ нагрузки. При наличии нескольких приемников энергии с различным cos φ эти расчеты существенно усложняются. 

Переменными э.д.с., напряжениями и токами называют э.д.с, напряжения и токи, периодически изменяющиеся во времени.

Индуктивные катушки и конденсаторы оказывают сопротивление протекающим по ним переменным токам. В этих сопротивлениях не происходит превращения электрической энергии в тепловую.

Амперметр показывает действующее значение тока


Расчет электрических цепей