Расчет выпрямителей, работающих на нагрузку с емкостной реакцией Предварительный расчет трансформатора. Методика расчёта линейных электрических цепей Расчёт трёхфазной цепи при соединении приемника в звезду

Примеры выполнения заданий курсовой работы по электротехнике ТОЭ

Теоретические основы комплексного метода расчета цепей переменного тока

 Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической:

 показательная тригонометрическая алгебраическая

 

В основе перехода от одной формы комплексного числа к другой лежит известная из математики формула Эйлера : 

Здесь обозначены:

j =  – мнимое единичное число,

Z – модуль комплексного числа,

a - аргумент комплексного числа,

а – вещественная часть комплексного числа,

jb – мнимая часть комплексного числа.

Соотношения между коэффициентами различных форм комплексного числа вытекают из формулы Эйлера :

 a = Z cosa ; b = Z sina ; Z =; a = arctg .

 Приведем наиболее часто встречающиеся численные соотношения :

 ej0 = 1 ; e± j180° = -1 ; e j90° = +j ; e-j90° = -j ;

  1/j = -j ; j2 = -1 ; j3 = -j ; и т.д. 

 Комплексное число Z = Z eja = a + jb может быть изображено вектором на комплексной плоскости (рис. 38), при этом алгебраической форме числа  соответствует декартовая система координат (a ® x; b ® y), а показательной форме числа Z =  - полярная система координат (Z ® r; a ® q).

Можно утверждать, что каждой точке (вектору) на комплексной плоскости соответствует определенное комплексное число, и наоборот, каждому комплексному числу соответствует определенная точка (вектор) на комплексной плоскости.

Известно, что синусоидальную функцию можно изобразить вектором, а вектор в свою очередь можно представить комплексным числом. Таким образом, синусоидальные токи и напряжения, характеризующие установившийся режим цепи переменного тока, могут быть представлены комплексными числами :

 Û - комплексная амплитуда,

 

 Û - комплексное действующее значение. Здесь Û -знак соответствия.

При расчете цепей переменного тока возникает необходимость выполнения различного рода математических операций с синусоидальными функциями. При замене синусоидальных функций (оригиналов) комплексными числами (изображениями) соответствующие математические операции выполняются с комплексными числами.

Сложение (вычитание) комплексных чисел производится в алгебраической форме

Умножение комплексных чисел может выполняться, как в алгебраической, так и в показательной формах:

 

Деление комплексных чисел может выполняться как в алгебраической, так и в показательной формах:

Возведение в степень (извлечение корня) комплексного числа выполняется только в показательной форме:

Установим порядок дифференцирования и интегрирования синусоидальных функций в комплексной форме. Пусть задана некоторая функция тока и ее комплексное изображение:

Производная и интеграл от этой функции их комплексные изображения будут равны:

;

.

Таким образом, дифференцированию синусоидальной функции времени соответствует в комплексной форме умножение ее комплексного изображения на множитель jw, а интегрированию – соответственно деление на тот же коэффициент:

 

Замена математических операций 2-го рода (дифференцирование, интегрирование) операциями 1-го рода (умножение, деление) существенно упрощает расчет цепей переменного тока в комплексной форме.

Современные инженерные калькуляторы в режиме «compl» позволяют выполнять все действия с комплексными числами непосредственно так же, как с обычными числами. При этом следует принять во внимание, что калькулятор выполняет действия над комплексными числами только в алгебраической форме  и результаты расчета выдает также в алгебраической форме. Если исходные комплексные числа заданы в показательной форме , то после их ввода необходимо выполнить операцию преобразования их в алгебраическую форму.

Комплексный метод расчета цепей переменного тока был разработан в 1910-1912гг. американским инженером Штейнметцом и сыграл большую роль в развитии теории электрических цепей переменного тока.

Мощность переменного тока В сложной электрической цепи, состоящей из разнородных элементов R, L, C, одновременно происходят следующие физические процессы

Переменные ток в однородных идеальных элементах Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

Электрическая цепь с последовательным соединением элементов R, L и C

Электрическая цепь с параллельным соединением элементов R, L и С

Активные и реактивные составляющие токов и напряжений При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Максимум мощности приемника имеет место при равенстве активных сопротивлений приемника и источника

Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки  и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов

Резонанс в сложных схемах Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.


Расчет токов коротких замыканий