Autocad
Информатика
Курсовой
Типовик
Начертательная геометрия
Математика
Электротехника
Расчет цепей

Физика

Сборочные чертежи
Искусство
Интегралы
Термех
Билеты
Эскиз детали
На главную

Примеры выполнения заданий курсовой работы по электротехнике ТОЭ

Теоретические основы комплексного метода расчета цепей переменного тока

 Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической:

 показательная тригонометрическая алгебраическая

 

В основе перехода от одной формы комплексного числа к другой лежит известная из математики формула Эйлера : 

Здесь обозначены:

j =  – мнимое единичное число,

Z – модуль комплексного числа,

a - аргумент комплексного числа,

а – вещественная часть комплексного числа,

jb – мнимая часть комплексного числа.

Соотношения между коэффициентами различных форм комплексного числа вытекают из формулы Эйлера :

 a = Z cosa ; b = Z sina ; Z =; a = arctg .

 Приведем наиболее часто встречающиеся численные соотношения :

 ej0 = 1 ; e± j180° = -1 ; e j90° = +j ; e-j90° = -j ;

  1/j = -j ; j2 = -1 ; j3 = -j ; и т.д. 

 Комплексное число Z = Z eja = a + jb может быть изображено вектором на комплексной плоскости (рис. 38), при этом алгебраической форме числа  соответствует декартовая система координат (a ® x; b ® y), а показательной форме числа Z =  - полярная система координат (Z ® r; a ® q).

Можно утверждать, что каждой точке (вектору) на комплексной плоскости соответствует определенное комплексное число, и наоборот, каждому комплексному числу соответствует определенная точка (вектор) на комплексной плоскости.

Известно, что синусоидальную функцию можно изобразить вектором, а вектор в свою очередь можно представить комплексным числом. Таким образом, синусоидальные токи и напряжения, характеризующие установившийся режим цепи переменного тока, могут быть представлены комплексными числами :

 Û - комплексная амплитуда,

 

 Û - комплексное действующее значение. Здесь Û -знак соответствия.

При расчете цепей переменного тока возникает необходимость выполнения различного рода математических операций с синусоидальными функциями. При замене синусоидальных функций (оригиналов) комплексными числами (изображениями) соответствующие математические операции выполняются с комплексными числами.

Сложение (вычитание) комплексных чисел производится в алгебраической форме

Умножение комплексных чисел может выполняться, как в алгебраической, так и в показательной формах:

 

Деление комплексных чисел может выполняться как в алгебраической, так и в показательной формах:

Возведение в степень (извлечение корня) комплексного числа выполняется только в показательной форме:

Установим порядок дифференцирования и интегрирования синусоидальных функций в комплексной форме. Пусть задана некоторая функция тока и ее комплексное изображение:

Производная и интеграл от этой функции их комплексные изображения будут равны:

;

.

Таким образом, дифференцированию синусоидальной функции времени соответствует в комплексной форме умножение ее комплексного изображения на множитель jw, а интегрированию – соответственно деление на тот же коэффициент:

 

Замена математических операций 2-го рода (дифференцирование, интегрирование) операциями 1-го рода (умножение, деление) существенно упрощает расчет цепей переменного тока в комплексной форме.

Современные инженерные калькуляторы в режиме «compl» позволяют выполнять все действия с комплексными числами непосредственно так же, как с обычными числами. При этом следует принять во внимание, что калькулятор выполняет действия над комплексными числами только в алгебраической форме  и результаты расчета выдает также в алгебраической форме. Если исходные комплексные числа заданы в показательной форме , то после их ввода необходимо выполнить операцию преобразования их в алгебраическую форму.

Комплексный метод расчета цепей переменного тока был разработан в 1910-1912гг. американским инженером Штейнметцом и сыграл большую роль в развитии теории электрических цепей переменного тока.

Мощность переменного тока В сложной электрической цепи, состоящей из разнородных элементов R, L, C, одновременно происходят следующие физические процессы

Переменные ток в однородных идеальных элементах Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

Электрическая цепь с последовательным соединением элементов R, L и C

Электрическая цепь с параллельным соединением элементов R, L и С

Активные и реактивные составляющие токов и напряжений При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Максимум мощности приемника имеет место при равенстве активных сопротивлений приемника и источника

Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки  и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов

Резонанс в сложных схемах Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.


Энергетика

Начертательная геометрия
Физика
Черчение
Лабораторные работы
Информатика
Электротехника