Физика ядерного реактора Цепная ядерная реакция Реактор РБМК – 1000 Эффективная эквивалентная доза Степень опасности радионуклидов

Эффективная эквивалентная доза. Единицы измерения.

Определение активности. Единицы активности.

Активностью А некоторого количества радиоактивного вещества называют число спонтанных ядерных превращений в этом количестве вещества dN, происшедших за интервал времени dt:

Единицей активности в системе СИ является беккерель (Бк). 1Бк=1распад/с. Внесистемная единица – кюри (Ки). 1Ки=3,7 ∙ 1010Бк.

Распад радиоактивных атомов сопровождается выходом -,-частиц, -квантов, конверсионных электронов, рентгеновского излучения. Число ядерных превращений не всегда совпадает с числом испущенных частиц и еще реже – с числом испускаемых -квантов. Поэтому недопустимо применение таких терминов как, например, “-,-, -активность”. Чтобы определить число частиц или -квантов, испускаемых при распаде ядра, необходимо знать схему распада данного радионуклида (рис.7.2). Повышение энергоэффективности теплосетей Около 80 % всех теплотрасс в России выполнено канальным способом с применением мягких отечественных материалов – прошивных матов из стекловаты или шлаковаты с гидроизоляцией (бризолом, изолом, полимерными лентами). Помимо того что перечисленные материалы в основном обладают недостаточными теплоизолирующими свойствами, они имеют весьма высокое влагопоглощение, что значительно уменьшает срок службы самой изоляции и увеличивает скорость коррозии металла труб.

Рис.23. Принятые обозначения схем распада (а) и схемы (б) распада 24Na и 65Zn.

Энергия в мегаэлектронвольтах.

Из закона радиоактивного распада и определения периода полураспада видно, что постоянная распада , а из определения единицы кюри следует, что активность препарата в 1Ки связана с числом радиоактивных атомов N соотношением

.

Отсюда число радиоактивных атомов N, соответствующих активности 1Ки, определяется как

N=3,7∙1010/=3,7∙1010∙T1/2/ln2.

Масса одного атома равна  (А – атомная масса, NA=6,022∙1023(моль)-1 – число Авогадро), поэтому полная масса радионуклида m, соответствующая активности А=1Ки, равна

.

Обратная величина, gm, численно равная активности в единицах кюри на 1г радиоактивного препарата,

Для решения практических задач -излучающие препараты удобно сравнивать по ионизационному эффекту в воздухе, поэтому в 1910г на Брюссельском конгрессе было предложено результаты сравнения препаратов Ra выражать в миллиграмм--эквивалентах Ra. 1мг.экв.Ra – это единица гамма – эквивалента радиоактивного препарата, -излучение которого при данной фильтрации и тождественных условиях измерения создает такую же мощность экспозиционной дозы, как и -излучение 1мг Госэталона радия в равновесии с основными дочерними продуктами распада при платиновом фильтре толщиной 0,5 мм. Принято считать, что при этих условиях 1мг “равновесного” радия создает на расстоянии 1см Рэксп=8,4р/ч.

Упругое рассеяние заряженных частиц на ядрах. Ядерное взаимодействие. При пролёте заряженной частицы вблизи ядра передача энергии ядру за счёт кулоновских сил будет невелика. Траектория частицы будет заметно отличаться от прямолинейной, но приближённо и в этом случае можно пользоваться выражением Бете-Блоха (с тем отличием, что mч < Mя, передаваемый ядру импульс будет в Zя раз больше. Zяe – заряд ядра; Ze – заряд падающей частицы; Mя = A ∙ mp).

Излучение Вавилова-Черенкова. Невелики и потери энергии на световое излучение Вавилова-Черенкова, которое возникает при движении заряженной частицы в среде со скоростью, превышающей скорость света в этой среде. Заряженная частица, двигаясь внутри диэлектрика с постоянной скоростью, создаёт вдоль своего пути локальную поляризацию его атомов. Сразу же после прохождения частицы поляризованные атомы возвращаются в исходное состояние и излучают электромагнитные волны. При определённых условиях эти волны складываются и наблюдается излучение.

Это самопроизвольное испускание лептонов ().

Экспозиционная доза (Dэксп) – это количественная характеристика фотонного излучения, которая основана на его ионизирующем действии в сухом атмосферном воздухе. Она определяется отношением суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны, освобожденные фотонами в элементе объема воздуха с массой dm, полностью остановились в воздухе, к массе воздуха в этом объеме: .

Эквивалентная доза. Относительная биологическая эффективность (ОБЭ). Коэффициент качества излучения. Единицы эквивалентной дозы. Для оценки биологического эффекта воздействия излучения произвольного состава потребовалось введение новой характеристики дозы. В задачах радиационной безопасности при облучении в малых дозах (меньше ~0,1 Гр) это эквивалентная доза с единицей измерения в СИ – зиверт (Зв). Зиверт – единица эквивалентной дозы любого вида излучения в биологической ткани, которое создаёт такой же биологический эффект, как и поглощённая доза в 1 Гр образцового рентгеновского излучения (излучение с граничной энергией 200 КэВ).

Эффективная эквивалентная доза. Единицы измерения. Международная комиссия по радиационной защите (МКРЗ) ввела в качестве меры радиационного воздействия на живой организм эффективную эквивалентную дозу (Нэф), которая определяется формулой: , где -средняя эквивалентная доза в органе или ткани организма (Т),  - взвешивающий коэффициент (коэффициент риска), равный отношению вероятности возникновения стохастического эффекта при облучении органа или ткани Т к вероятности его возникновения. при равномерном облучении всего тела.  определяет вклад данного органа в риск неблагоприятных стохастических эффектов для организма в целом при равномерном его облучении.

Газовые счётчики. Газовый счётчик представляет собой датчик (по конструкции аналогичный ионизационной камере), предназначенный для регистрации отдельных ядерных частиц. В отличие от ионизационных камер в газовых счётчиках для усиления ионизационного тока используется газовый разряд. Благодаря высокой чувствительности газовый счётчик реагирует на каждую частицу, возникшую внутри объёма газа, или проникшую в него из стенки счётчика.

Сцинтилляционный метод дозиметрии. Схема сцинтилляционного дозиметра состоит и сцинтиллятора, световода, фотоэлектронного умножителя (ФЭУ) и электронной регистрирующей системы. Излучение, взаимодействуя с веществом сцинтиллятора, вызывает образование в нём электронов, которые возбуждают атомы сцинтиллятора. Переход возбуждённых атомов в основное состояние сопровождается излучением фотонов. Свет через световод попадает на фотокатод ФЭУ.

Химическая дозиметрия. Некоторые недостатки ионизационных и калориметрических методов дозиметрии (трудности в поддержании режима тока насыщения и ухудшение свойств изоляции электродов при измерении больших мощностей доз или недостаточная чувствительность при определении дозиметрических характеристик низкоинтенсивных излучений) привели к необходимости разработки химических методов дозиметрии, использующих иные принципы.


Ядерная физика