Анализ цепей синусоидального тока Последовательное соединение резистора, катушки и конденсатора.

Схема замещения и векторная диаграмма асинхронного двигателя

  При анализе работы асинхронной машины используют схему замещения. Переход от схемы с электромагнитной связью к схеме с электрической связью показан на (рис. 11.6). На схеме замещения (рис. 11.6 а) электромагнитная связь осуществляется через основной магнитный поток , который индуктирует в обмотке статора ЭДС , а в обмотке вращающегося ротора – ЭДС , определяемые уравнениями (11.5) и (11.8). Схема замещения (рис. 11.6 б) соответствует неподвижному ротору, для которого индуктивное сопротивление равно , активное – . При этом ЭДС ротора  определяется выражением (11.9), а уравнение электрического равновесия для цепи ротора имеет вид

.  (11.23)

 Умножив это равенство на коэффициент трансформации ЭДС   (11.11) с учетом (11.12) и (11.21) получим

,  (11.24)

где  – приведенное активное сопротивление фазы ротора;   – приведенное индуктивное сопротивление фазы ротора. Формирование компонентных уравнений цепи Для составления уравнений электрического равновесия цепи с помощью ЭВМ необходимо формализовать исходные о топологии и параметрах входящих в нее элементов. Найти: ток через источник Е, используя метод эквивалентных преобразований. Обозначим положительное направление искомого тока Iх.

Рис. 11.6

 Уравнение (11.24) позволяет перейти к схеме замещения (рис. 11.6. в) с электрической связью между статором и ротором. В ветви намагничивания протекает ток , который согласно (11.20) и схеме замещения
(рис. 11.6 в) определяется по формуле

.

  Падения напряжения от этого тока на сопротивлениях  и  равны ЭДС: .

 Уравнение электрического равновесия для цепи статора

 (11.25)

аналогично уравнению (9.7) для первичной цепи трансформатора.

Рис. 11.7

 Схеме замещения (рис. 11.6 в) и уравнениям (11.24) и (11.25) соответствует векторная диаграмма (рис. 11.7). Из рис. 11.18 видно, что с увеличением момента нагрузки на валу и, следовательно, скольжения, возрастает ток ротора . Из векторной диаграммы следует, что одновременно увеличивается ток статора  и уменьшается фаза . С увеличением тока  увеличиваются падения напряжения  на статоре и когда падение напряжения становится соизмеримым с напряжением , угол  вновь возрастает.

 В режиме холостого хода ток ротора  0, угол сдвига  тока статора относительно напряжения сети   близок к .

Механическая характеристика двигателя последовательного возбуждения является мягкой (рис. 11.17).



Уравнение механической характеристики двигателя последовательного возбуждения выглядит следующим образом:

С увеличением нагрузки скорость двигателя резко падает.
С уменьшением нагрузки на валу двигатель развивает очень большую частоту вращения. Говорят, что двигатель идет вразнос. Работа двигателя последовательного возбуждения без нагрузки недопустима.
Двигатель смешанного возбуждения имеет механическую характеристику, представляющую собой нечто среднее между механическими характеристиками двигателя параллельного и последовательного возбуждения.
Двигатели с параллельным возбуждением применяются для привода станков и различных механизмов, требующих широкой регулировки скорости.
Двигатели с последовательным возбуждением применяются в качестве тяговых двигателей электровозов, трамваев и т.д.


Мощности цепи синусоидального тока