Линейные цепи постоянного тока Расчет и исследование сложных электрических схем

Магнитное поле и магнитные цепи

Ферромагнитные материалы и их магнитные свойства

 По магнитным свойствам все материалы разделяют на две группы: ферромагнитные (железо, кобальт, никель и их сплавы и др.) и неферромагнитные материалы (все материалы, за исключением ферромагнитных).

 Особенностью неферромагнитных материалов является то, что зависимость между магнитной индукцией В и напряженностью магнитного поля Н в них является линейной. Их абсолютная магнитная проницаемость есть величина постоянная и практически равна магнитной постоянной

 (7.1)

 Материалы, магнитная проницаемость которых достигает больших значений и зависит от внешнего магнитного поля и предшествующего состояния, называют ферромагнитными. Свойства ферромагнитных материалов принято характеризовать зависимостью магнитной индукции В от напряженности магнитного поля Н. Если перемагничивать образец в периодическом магнитном поле, то кривая  имеет вид петли, называемой петлей гистерезиса (рис. 7.1). Участок 0а является кривой намагничивания, поскольку поле возникает при нулевом значении индукции. Точки б и д соответствуют остаточной индукции , а напряженность в точках в и е называют задерживающей, или коэрцитивной, силой . Расчет мгновенных значений параметров режима графическим методом При расчете мгновенных  значений напряжений u(t) и токов i(t) в нелинейной цепи используются физические  характеристики нелинейных элементов, а именно: вольтамперная характеристика u=f(i) или i=f(u) для резистора, веберамперная характеристика i=f(y) или y=f(i) для катушки и кулонвольтная характеристика q=f(u) или u=f(q) для конденсатора.

Рис. 7.1

 В зависимости от магнитной проницаемости ферромагнитные материалы разделяют на две группы:

 1) магнитомягкие с большой магнитной проницаемостью и с малой коэрцитивной силой . К ним относят электротехнические стали, пермаллой и ферриты;

2) магнитотвердые с малой магнитной проницаемостью, большой коэрцитивной силой  и большой остаточной индукцией  Тл.

 Магнитотвердые материалы применяют для изготовления постоянных магнитов. К ним относятся углеродистые, вольфрамовые, хромистые и кобальтовые сплавы.

 Ферромагнитные материалы играют важную роль в электротехнике, так как дают возможность при относительно небольших напряженностях получать сильные магнитные поля и конструировать электромагнитные устройства, обладающие заданными характеристиками.

Ферромагнитные магнитопроводы используют во всех электрических машинах, трансформаторах, электромагнитах, реле и др.

Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения

Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент

где CM - коэффициент, зависящий от конструкции двигателя.
На рис. 11.12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.

Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.


В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.

На рис. 11.13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда

. (11.3)

Уравнение (11.3) называется основным уравнением двигателя.


Электрическая энергия и электрическая мощность