Линейные цепи постоянного тока Расчет и исследование сложных электрических схем

Нелинейные цепи постоянного и синусоидального тока

 Общие сведения

 В теории линейных цепей предполагается, что параметры всех сосредоточенных элементов: сопротивление резистора , индуктивность катушки , емкость конденсатора  – являются неизменными, не зависящими от токов и напряжений. Это предположение является идеализацией. В действительности параметры элементов в какой-то степени зависят от тока и напряжения. Поэтому параметры , и допустимо считать неизменными лишь в ограниченных пределах изменения токов и напряжений. Однако существует множество элементов и устройств, параметры которых существенно зависят от токов и напряжений. Такие элементы называются нелинейными, а цепь, содержащая хотя бы один нелинейный элемент, называется нелинейной.

 Нелинейные цепи широко применяют в электротехнике, радиоэлектронике, автоматике и других областях. Анализ процессов в нелинейных электрических цепях значительно сложнее, чем в линейных цепях.

 Нелинейные элементы подразделяются на нелинейные резисторы, нелинейные катушки и нелинейные конденсаторы.

 Обычно нелинейные элементы делят две группы:

 а) неуправляемые элементы (нелинейные двухполюсники), которые можно рассматривать как элементы, обладающие одним входом, например, диод, лампа накаливания, термосопротивление, катушка со стальным сердечником и др.;

 б) управляемые элементы (нелинейные трех-, четырех- или многополюсники), имеющие несколько входов, из которых одни могут использоваться как управляющие, другие как управляемые, например, транзистор, тиристор, магнитный усилитель и др.

 Свойства нелинейных резисторов удобно анализировать с помощью вольтамперных характеристик (ВАХ). Они обычно задаются графиком, таблицей или аналитическим выражением. По виду ВАХ относительно осей координат их разделяют на симметричные и несимметричные. Симметричными называют элементы, у которых характеристика не зависит от направления в них тока и напряжения на зажимах (рис. 6.1, кривая 1). К числу таких элементов относят лампы накаливания, терморезисторы и др. Несимметричными называют нелинейные элементы, у которых характеристика не одинакова при различных направлениях в них тока и напряжении на зажимах (рис. 6.1, кривая 2). Несимметричную ВАХ имеют диод, стабилитрон, динистор и др.

 Свойства нелинейного резистора кроме ВАХ характеризуются зависимостями его статического или дифференциального сопротивления от тока. Рассмотрим ВАХ нелинейного резистора (рис. 6.2). Допустим, что его рабочий режим задан точкой . Отношение напряжения на резисторе к протекающему току называют статическим сопротивлением

 (6.1)

Рис. 6.1 Рис. 6.2

 

Из рис. 6.2 видно, что это сопротивление пропорционально тангенсу угла  между прямой, соединяющей точку  с началом координат, и осью токов. Отношение малого (теоретически бесконечно малого) приращения напряжения  на нелинейном элементе к соответствующему приращению тока  называют дифференциальным сопротивлением

 (6.2)

 Это сопротивление пропорционально тангенсу угла между касательной к ВАХ в точке   и осью токов. Дифференциальное сопротивление характеризует состояние нелинейного элемента при достаточно малых изменениях тока или напряжения. Для прямолинейного участка ВАХ дифференциальное сопротивление равно отношению конечного приращения напряжения к конечному приращению тока

. (6.3)

 У нелинейных элементов с падающей ВАХ имеется участок характеристики, где дифференциальное сопротивление отрицательно, так как положительное приращение тока сопровождается отрицательным приращением напряжения. Примерами таких нелинейных элементов являются электрическая дуга и газотрон.

Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения

Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент

где CM - коэффициент, зависящий от конструкции двигателя.
На рис. 11.12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.

Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.


В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.

На рис. 11.13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда

. (11.3)

Уравнение (11.3) называется основным уравнением двигателя.


Электрическая энергия и электрическая мощность