Autocad
Информатика
Курсовой
Типовик
Начертательная геометрия
Математика
Электротехника
Расчет цепей

Физика

Сборочные чертежи
Искусство
Интегралы
Термех
Билеты
Эскиз детали
На главную

Расчет электрических цепей несинусоидального тока

 Для расчета цепей несинусоидального тока напряжения источника или ЭДС должны быть представлены рядом Фурье. Основывается расчет на принципе наложения, согласно которому мгновенное значение тока в любой ветви равно сумме мгновенных значений токов отдельных гармоник. Расчет выполняют для каждой из гармоник в отдельности с использованием известных методов расчета цепей. Сначала выполняют расчет токов и напряжений, возникающих от действия постоянной составляющей ЭДС, затем – возникающих от действия первой гармоники ЭДС и т.д.

 При расчете токов и напряжений, возникающих от действия постоянной составляющей ЭДС, следует иметь в виду, что напряжение на катушке равно нулю, так как

а постоянный ток через конденсатор не протекает

 Расчет для первой и высших гармоник выполняют известными методами расчета линейных электрических цепей синусоидального тока (как правило, в комплексной форме). При этом следует учитывать, что индуктивное сопротивление растет прямо пропорционально частоте, а емкостное сопротивление уменьшается с ростом частоты

 

 Допустим, что в цепи (рис. 5.2) действует несинусоидальное напряжение

 

 Требуется найти мгновенное значение тока. По принципу наложения мгновенное значение несинусоидального тока для рассматриваемой схемы

.

 Так как цепь содержит конденсатор, то , т.е. постоянная составляющая тока отсутствует.

 Определим комплекс полного сопротивления цепи для каждой гармоники

.

 Комплекс амплитуд токов

 Тогда мгновенное значение тока

Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения

Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент

где CM - коэффициент, зависящий от конструкции двигателя.
На рис. 11.12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.

Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.


В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.

На рис. 11.13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда

. (11.3)

Уравнение (11.3) называется основным уравнением двигателя.


Энергетика

Начертательная геометрия
Физика
Черчение
Лабораторные работы
Информатика
Электротехника