Autocad
Информатика
Курсовой
Типовик
Начертательная геометрия
Математика
Электротехника
Расчет цепей

Физика

Сборочные чертежи
Искусство
Интегралы
Термех
Билеты
Эскиз детали
На главную

Реактивная составляющая входного тока определяется как алгебраическая сумма реактивных составляющих токов в параллельных ветвях. Реактивную составляющую ветви с катушкой считают положительной, а с конденсатором – отрицательной. Знаки учитывают при подстановке соответствующих значений

 (2.29)

где  – реактивная составляющая проводимости цепи, равная алгебраической сумме реактивных проводимостей отдельных ветвей.

 В общем случае

где  – реактивная проводимость отдельной -й ветви,

. (2.30)

 Если рассматриваемая ветвь чисто реактивная: , проводимость  является обратной реактивному сопротивлению. Ток на входе цепи (см. векторную диаграмму на рис. 2.13 б) с учетом (2.28, 2.29)

 (2.31)

где  – полная проводимость цепи, равная геометрической сумме активной и реактивной проводимостей.

 Угол сдвига фаз  также определяется из векторной диаграммы. На рис. 2.14 а изображена векторная диаграмма входного тока , его составляющих  и  и напряжения источника . Треугольник, образованный вектором тока и его проекциями ,  и , называется треугольником токов (рис. 2.14 а). Если стороны этого треугольника разделить на напряжение , получится треугольник, подобный треугольнику токов – треугольник проводимостей. Он образован проводимостями , модули которых равны соответствующим проводимостям, а стороны совпадают с векторами , ,  треугольника токов (рис. 2.14 б).

 а) б) в)

Рис. 2.14

 На рис. 2.14 в показан треугольник проводимостей при <0. Из него находим соотношения между параметрами и формулы для определения угла сдвига фаз

. (2.32)

 Чтобы учесть знак , следует использовать формулы тангенса и синуса.

 В этой цепи, когда общий ток совпадает по фазе с напряжением, а входная реактивная проводимость  или , может возникнуть явление резонанса. При  противоположные по фазе реактивные составляющие токов равны, поэтому резонанс в такой цепи получил название резонанса токов.

Пример 2.1. Определить действующее значение входного тока по известным токам в параллельных ветвях (риc. 2.15 а) = 3 A; = 1 A; = 5 A.

 Решение находим по первому закону Кирхгофа

,

в соответствии с которым строим векторную диаграмму.

Рис. 2.15

 Направления трех слагаемых тока  выбраны по отношению к вектору . Из диаграммы (рис. 2.16 б) определяем ток

 А.

Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 11.10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат Rв. Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.


Энергетика

Начертательная геометрия
Физика
Черчение
Лабораторные работы
Информатика
Электротехника