Линейные цепи постоянного тока Расчет и исследование сложных электрических схем

Электрический ток. Плотность тока. Электрическое напряжение

 Направленное движение свободных заряженных частиц в проводнике под действием электрического поля называется электрическим током. Электрический ток является скалярной величиной, которая равна пределу отношению заряда к промежутку времени, когда последний стремится к нулю:

 

 Электрический ток, неизменный по направлению и величине, называется постоянным током.

 В проводниках первого рода (металлы) ток образуется свободными электронами, поэтому электропроводность их называется электронной. В проводниках второго рода (расплавленные соли, растворы кислот, щелочей, солей) носителями тока, заряженными частицами, являются ионы.

 Значение постоянного тока определяется количеством электричества или зарядом Q, проходящим через поперечное сечение проводника в 1 с:

Размерность тока – ампер (А). 1 А – неизменный ток, который, проходя по двум параллельным проводникам бесконечной длины и ничтожно малого круглого сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную  Н на каждый метр длины.

 Положительным направлением электрического тока принято условно считать направление движения положительных зарядов от плюса источника электрической энергии к минусу. На схеме оно совпадает с направлением ЭДС и указывается стрелкой.

 Условиями возникновения электрического тока являются:

 1) наличие источника, поддерживающего разность потенциалов между носителями зарядов;

 2) замкнутость пути, по которому перемещаются заряды.

 Количественно ток определяется по показаниям электроизмерительных приборов – амперметров, где используются тепловое, магнитное и химическое действие тока.

 Чтобы судить о степени загруженности проводов электрическим током, вводится понятие плотность тока.

 Плотность тока δ есть векторная величина, равная пределу отношения тока сквозь элемент поверхности, перпендикулярной направлению движения заряженных частиц к этому элементу, когда последний стремится к нулю:

.

 Допускаемая плотность тока, например, в проводах обмоток электрических машин равна 3...7 А/мм2.

 Если ток равномерно распределен по сечению проводника, то плотность тока

.

 Электрическим напряжением называется скалярная величина, равная линейному интегралу напряженности электрического поля. Для электрического поля постоянного тока

, (1.1)

где  – напряженность электрического поля;  и  – потенциалы однородного электрического поля в поперечных сечениях a и b участка проводника.

 Размерность напряжения – вольт (В). 1 В – это напряжение между концами проводника, в котором при перемещении положительного заряда 1 кулон (Кл) совершается работа в 1 джоуль (Дж).

 При расчетах электрических цепей положительные направления токов в элементах цепи в общем случае заранее неизвестны. Поэтому одно из двух возможных направлений принимается за положительное и указывается на схеме стрелкой. Это направление выбирают произвольно. Условное положительное направление напряжения на схеме электрической цепи также выбирается произвольно и указывается стрелкой. Между зажимами потребителей электрической энергии положительные направления тока и напряжения, как правило, выбираются одинаковыми.

 На рис. 1.5 а показаны обозначения условных положительных направлений на примере простейшей цепи постоянного тока.

 Иногда условные положительные направления напряжения указывают двойными индексами . Каждый индекс соответствует точке, обозначенной на схеме. Условное положительное направление напряжения принято от точки а с первым индексом к точке в со вторым индексом:

.

 Так как условные положительные направления тока и напряжения совпадают, на схеме достаточно указать только направления токов (рис. 1.5 б). Если на схеме не указывается источник, то между его выходными зажимами обязательно указывается напряжение (рис. 1.5 б). Если в результате расчета электрической цепи ток в элементе электрической цепи получился отрицательным, это означает, что действительное направление тока противоположно принятому направлению.

Генераторы с независимым возбуждением. Характеристики генераторов

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.
Схема генератора с независимым возбуждением показана на рис. 11.6.
Магнитное поле генераторов с независимым возбуждением может создаваться
от постоянных магнитов (рис. 11.7).



Рис. 11.6 Рис. 11.7


Электрическая энергия и электрическая мощность