Машиностроительное черчение

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Основные геометрические фигуры

     Геометрические фигуры относительно плоскостей проекций могут занимать произвольное (общее) или одно из частных положений.

    Геометрические фигуры относительно плоскостей проекций

     Прямые и плоскости общего положения не параллельны и не перпендикулярны ни к одной из плоскостей проекций. И отличаются тем, что при проецировании их метрические характеристики (расстояния, углы и площади) подвергаются искажению (Рис.16). На приведенном примере ни одна из проекций отрезка не равна длине самого отрезка , искажены и углы наклона отрезка к плоскостям  и . И, наконец, площадь ни одной проекции треугольника не равна площади самого треугольника. Примечание: углы наклона прямой к плоскостям проекций, как правило, имеют особые обозначения (угол – к плоскости ,  – к  и  – к ). Расскажите об особенностях чертежного шрифта


     Геометрические фигуры – частного положения параллельны или перпендикулярны к одной из плоскостей проекций. В первом случае это прямые и плоскости уровня, во втором – прямые и плоскости проецирующие.

    Геометрические фигуры – частного положения параллельны или перпендикулярны к одной из плоскостей проекций

     Прямые уровня: горизонталь (), фронталь () и профильная прямая (). По их названию становится понятно, относительно какой плоскости проекций каждая из них параллельна.

     Плоскости уровня: горизо-нтальная, фронтальная и профильная.

     Чертежи прямых и плоскостей уровня отличаются прежде всего тем, что метрические характеристика этих фигур проецируются без искажения. Примером может служить Рис.17. 

     Фронталь . На фронтальной проекции фронтали отражаются натуральная величина отрезка () и натуральная величина его наклона отрезка к горизонтальной плоскости проекций. При этом горизонтальная проекция отрезка, естественно, параллельна оси .

     Здесь же треугольник  – в горизонтальной плоскости. Горизонтальная проекция треугольника отражает натуральную величину его площади. Что касается фронтальной проекции треугольника, то она вырождается в прямую линию, параллельную оси .

      Особенность вырожденной проекции любой геометрической фигуры состоит в том, что она обладает собирательным свойством. Это означает, что любая точка фигуры получает свое отражение на этой проекции.

    Примеры выполнения технических чертежей