Начертательная геометрия выполнение графического задания

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Конус,  сфера и тор

    По заданным проекциям А 2 построить проекции А 1 точек А, которые принадлежат конусу, сфере и тору (рис. 28).

    Данные поверхности являются поверхностями вращения. Для построения проекций точек, принадлежащих таким поверхностям, целесообразно использовать проекции параллелей – окружностей, плоскости которых параллельны плоскостям проекций.

    Построения:

    через заданную проекцию  А 2 точки А проводим проекцию m2 (отрезок прямой) – фронтальную проекцию параллели m;

    строим проекцию m1 (окружность радиуса О2 М2) – горизонтальную проекцию параллели m; Расскажите об особенностях применения и обозначения масштаба на машиностроительных и строительных чертежах

    находим А 1 Î m 1.

    Если задана горизонтальная проекция точки, то построение других проекций точки, допустим фронтальной, аналогично:

    1) строим горизонтальную проекцию m1 (окружность радиуса О 1 А 1);

    2) строим проекции М1 и М2 точки М пересечения параллели m и одной из образующих конуса (сферы, тора);

    через полученную  проекцию М 2 точки М строим фронтальную проекцию m2 параллели (М 2 Î m 2);

    находим А 2 Î m 2.

    Конус, сфера и тор

      Построение точки на поверхностях вращения

    Рис. 28. Построение точки на поверхностях вращения

    5.2. Построение проекций линий, принадлежащих поверхностям

    Рассмотренные построения проекций точек на поверхностях предметов можно использовать при построении проекций линий, принадлежащих поверхности предмета. Такие линии могут быть построены по точкам. Предварительно следует продумать, каким поверхностям принадлежат отдельные участки линии, какие это участки, как проецируется каждый участок на все плоскости проекций.

    На  рис. 23 – 27 показаны примеры различных поверхностей с построенными на них линиями, являющимися линиями пересечения с отверстиями простейших форм. По заданной фронтальной проекции построены горизонтальная и профильная проекции отверстий. Вначале строятся концы отдельных участков (как пример – точка А ) и другие опорные точки линии, затем находятся проекции других точек линии пересечения из условия их принадлежности определённой поверхности. Когда построено достаточное количество точек, их следует последовательно соединить линиями с учётом их видимости.

    Общий способ  нахождения проекций точек линии пересечения поверхностей

    На практике применяют более рациональный способ решения этой задачи – способ вспомогательных поверхностей-посредников.

    Наиболее распространённые посредники – плоскости частного положения (уровня и проецирующие) и сферы концентрические (с общим центром). Те или иные посредники выбираются в зависимости от вида пересекающихся поверхностей, их взаимного положения, формы проекций получающихся линий пересечения. При их выборе нужно стремиться к тому, чтобы вспомогательные линии пересечения проецировались, по крайней мере, на одну из плоскостей проекций, в прямые, отрезки прямых или окружности. В этом случае  достигается наибольшая простота построений.

    Способы вспомогательных плоскостей и сфер –посредников изучаются в курсе «Начертательная геометрия».

    Примеры выполнения технических чертежей