Машиностроительное черчение

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Задача. Решить задачу 2 на безосном комплексном чертеже.

     Решение:

     На линии связи  отметить разницу  и через полученную точку под прямым углом провести линию связи для последующего построения на ней проекций и .

     Для продолжения решения повторить пункты 3 и 4 предыдущей задачи и несколько изменить пункт 5. Через проекцию  провести линию связи параллельно линии , отметить на ней разницу и обозначить профильную проекцию: .

    Конкурирующие точки Лабораторная работа №3 Использование локальных систем координат при получении изображений предметов Цель: Изучение методов построения взаимосвязанных изображений деталей с использованием: 1) локальных систем координат; 2) вспомогательных прямых; 3) команд инструментальной панели Геометрия; 4) нанесения штриховки.

    Особый практический интерес вызывает относительное положение точек, когда они находятся на одном проецирующем луче. И в направлении проецирующего луча имеют общую для них проекцию. Точки на одном проецирующем луче называются конкурирующими. Объяснение такому названию – в том, что в пространстве для наблюдателя одна из точек видима, другая – нет. И, соответственно, на чертеже: одна из проекций конкурирующих точек видима, проекция другой точки – невидима.

     На пространственной модели проецирования (Рис.11) из двух конкурирующих точек и  видима точка  по двум взаимно дополняющим признакам. Судя по цепочке  точка   ближе к наблюдателю, чем точка . И, соответственно, – дальше от плоскости проекций . То есть .

     Если видима сама точка , то видима и её проекция . По отношению к совпадающей с ней проекцией . (Для наглядности и при необходимости невидимые проекции точек принято заключать в скобки).

    Решить задачу 2 на безосном комплексном чертеже.

    На пространственной модели проецирования

      

     Уберем на модели точки  и . Останутся их совпадающие проекции на плоскости  и раздельные изображения – на . Условно оставим и фронтальную проекцию наблюдателя . Тогда по цепочке изображений  можно будет судить о том, что  и что видима и сама точка  и её проекция .

     Другой наблюдатель из двух конкурирующих точек и  видит точку и её проекцию . Поскольку общий проецирующий луч этих точек параллелен оси , то признак видимости конкурирующих точек  и  определяется неравенством .

     Для примера рассмотрим две пары тех же конкурирующих точек на комплексном чертеже (Рис.12).

     Судя по совпадающим проекциям  сами точки инаходятся на одном проецирующем луче, параллельном оси . Значит сравнению подлежат координаты  этих точек. Для этого используем фронтальную плоскость проекций с раздельными изображениями точек. В данном случае . Из этого следует, что видима проекция .

     Точки  и  на том же комплексном чертеже находятся на одном проецирующем луче, параллельном оси . Поэтому из сравнения  делаем вывод, что видима проекция .

     Общее правило. Видимость для совпадающих проекций конкурирующих точек определяется сравнением координат этих точек в направлении общего проецирующего луча. Видима та проекция точки, у которой эта координата больше. При этом сравнение координат ведется на плоскости проекций с раздельными изображениями точек.

      Задача определения видимости конкурирующих точек имеет большое практическое значение. Поскольку окончательная обводка чертежа геометрической фигуры производится с учетом видимости её элементов.

    Примеры выполнения технических чертежей