Начертательная геометрия Машиностроительное черчение

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Задание: построить проекции фигуры сечения сферы плоскостью Р (рис. 11.10).

    Решение: плоскость Р является фронтально проецирующей. На фронтальную плоскость проекций окружность (фигура сечения) проецируется в виде отрезка прямой, на горизонтальную - в виде эллипса. Эллипс строят с помощью точек. Точки 1 и 2 расположены на главном меридиане сферы, а точки 3 и 4 - на экваторе сферы. Для нахождения верхней и нижней (экстремальных) точек 5 и 6 определяют их фронтальные проекции 52 и 62, которые находятся в середине фронтальной проекции отрезка [1222]. Через фронтальные проекции точек проводят фронтальную проекцию окружности n2 (на плоскость П2 она проецируется в прямую линию). Рассечение от оси сферы до очерковой образующей определяет радиус окружности R'. Этим радиусом строят горизонтальную проекцию окружности п1 и на ней находят проекции точек 5 и 6 - 51 и 61. Промежуточные точки 7 и 8 определяют аналогичным способом. Форматы файлов растровой графики. Растровый файл устроен проще (для понимания, по крайней мере). Он представляет из себя прямоугольную матрицу (bitmap), разделенную на маленькие квадратики - пикселы (pixel picture element). Растровые файлы можно разделить два типа: предназначенные для вывода экран и печати.

    Задание: построить проекции фигуры сечения сферы плоскостью Р

    Задание: построить проекции и истинную величину фигуры сечения сферы плоскостью общего положения Р (P1 и Р2). Построить развёртку поверхности сферы (рис. 11.11).

    Задание: построить проекции и истинную величину фигуры сечения сферы плоскостью

    Решение: для решения задачи плоскость общего положения Р(Р1 Р2) преобразуют способом замены плоскостей проекций в проецирующую. Заменяют фронтальную плоскость проекции П2 на П4- Проводят ось х1 перпендикулярно к горизонтальному следу pi плоскости Р. Строят плоскость Р в новой системе плоскостей П1/П4. Для этого берут на фронтальном следе Р2 плоскости Р произвольную точку Е (Е2). Находят горизонтальную проекцию e1 точки Е, затем строят проекцию точки Е и в системе П1/ П4. Через проекцию Е4 и точку схода следов на оси jq проводят фронтальный след Р4 плоскости проекцию сферы переносят в систему П1/II4. Для этого проводят через горизонтальную проекцию 01, центра 0 сферы линию проекционных связей перпендикулярно к оси x1 и отмечают на ней (на линии проекционных связей) координату z точки 0. Полученную проекцию обозначают 04. Затем строят проекцию сферы заданного радиуса в системе П1П4. После преобразования плоскости Р в проецирующее положение задача сводится к решению предыдущей задачи (см. п. 11.4.7), т. е. сначала строят горизонтальную проекцию фигуры сечения, а затем, используя признак принадлежности точки плоскости, строят фронтальную проекцию фигуры сечения сферы плоскостью общего положения.

    Для определения натуральной величины фигуры сечения сферы необходимо выполнить вторую замену плоскостей проекций (рис. 11.11). С этой целью преобразовывают плоскость сечения Р в плоскость уровня. Для этого проводят ось Х2 параллельно фронтальному следу Р4. Проецируют центр окружности 0 в систему П4 /П5, отложив координату у' от оси х2 в направлении проецирования, и отмечают проекцию 05. Натуральная величина окружности строится радиусом R, равным половине отрезка [1424].

    Поверхность сферы не может быть развёрнута точно. Для неё строят приближённую развёртку (рис. 11.12).

    Поверхность сферы разбивается на равное число частей (рис. 11.12, а), например, на 16. Разбивку производят плоскостями, проходящими через один из диаметров шара MN.

    Каждую часть поверхности сферы, находящуюся между двумя смежными плоскостями, заменяют частью цилиндрической поверхности с осью, проходящей через центр сферы и перпендикулярной к диаметру MN. Диаметр цилиндрической поверхности принимают равным диаметру сферы.

    Поверхность сферы разбивается на равное число частей

    Для наглядности ниже рассмотрено построение только одной из частей поверхности сферы, расположенной между плоскостями Р и .

    Выделенную часть поверхности сферы заменяют цилиндрической осью (, которая перпендикулярна к диаметру MN и плоскости дуги 15. Дугу 15 делят на равные части (в каждом случае - на четыре). Для построения развёртки откладывают на вертикальной прямой отрезки, равные хордам данных дуг. Величины этих хорд с достаточной степенью точности можно считать равными величинам дуг. По горизонтальной прямой откладывают величины соответствующих образующих цилиндрической поверхности. Полученные точки соединяют кривой линией (рис. 11.12,6).

    Примеры выполнения технических чертежей