Начертательная геометрия Машиностроительное черчение

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Прямая линия, перпендикулярная к плоскости

    Основные положения

    Обратимся к рисунку 8.1, на котором изображена плоскость  и перпендикулярная к ней прямая п.

    Прямая линия, перпендикулярная к плоскости

    Прямая и перпендикулярна к любой прямой плоскости , т.е.. Каждый такой прямой угол проецируется на плоскость проекций в виде некоторого угла, но угол между прямой n и горизонталью плоскости h проецируется на горизонтальную плоскость проекций прямым углом, так как его сторона h||П1. Образование боковой поверхности зубьев

    Если , то .

    Угол между прямой п и фронталью  плоскости проецируется на фронтальную плоскость проекций прямым углом (его сторона || П2).

    Если , то .

    Если прямая перпендикулярна к плоскости, то ее проекции перпендикулярны к одноименным проекциям линий уровня этой плоскости.

    На рисунке 8.2 через точку N проведена прямая и, перпендикулярная к плоскости . Для этого в плоскости  (аxb) определены горизонталь h и фронталь , и горизонтальная проекция перпендикуляра проведена перпендикулярно к горизонтальной проекции горизонтали, а фронтальная проекция — перпендикулярно к фронтальной проекции фронтали:.

    Если прямая перпендикулярна к плоскости, то ее проекции перпендикулярны к одноименным проекциям линий уровня

    В том случае, когда плоскость задана следами (рис. 8.3), проекции перпендикуляра располагаются перпендикулярно к одноименным следам плоскости:.

    Рисунок 8.2 позволяет утверждать, что изображенные на нем прямая и и плоскость S взаимно перпендикулярны. Действительно, из чертежа следует, что прямая n перпендикулярна к прямой h, так как угол между горизонтальными проекциями сторон угла прямой и одна сторона его (h) параллельна плоскости П1. Точно так же прямая и перпендикулярна к прямой . Но если прямая линия перпендикулярна к двум пересекающимся прямым плоскости, то она перпендикулярна к этой плоскости.

    Плоскость, перпендикулярную к данной прямой, определяют с помощью пересекающихся линий уровня.

    Плоскость, перпендикулярную к данной прямой, определяют с помощью пересекающихся линий уровня. На рисунке 8.4 (а - условие, 6 - решение) через данную точку А проведена плоскость , перпендикулярная к заданной прямой п. Горизонталь h плоскости проходит через точку А (). Фронталь этой плоскости может быть также проведена через точку А, но может пересекать горизонталь и в любой другой точке, поскольку все они находятся в искомой плоскости. На рисунке 8.4 фронталь f2 проходит через точку В .

    На рисунке 8.5 показана прямая, перпендикулярная к горизонтально проецирующей плоскости. Очевидно, эта линия является горизонталью.

    На рисунке 8.5 показана прямая, перпендикулярная к горизонтально проецирующей плоскости

    На рисунке 8.6 изображена прямая, перпендикулярная к фронтально проецирующей плоскости. Она является фронталью.

    На рисунке 8.7 изображена прямая п (MN), перпендикулярная к профильно проецирующей плоскости . Заметим, что, проведя проекции и  мы еще не определим величину искомого перпендикуляра.

    Это не должно нас удивлять, так как, а перпендикулярность прямой и плоскости обеспечивается перпендикулярностью этой прямой к двум пересекающимся прямым плоскости. Для решения задачи нужно построить профильный след. Тогда .

    Если требуется определить, перпендикулярна ли некоторая прямая т к заданной плоскости , то через какую-нибудь точку М этой прямой следует провести перпендикуляр n к плоскости  (рис. 8.8).

    При совпадении линии m и n прямая m перпендикулярна к плоскости .

    Примеры выполнения технических чертежей