Начертательная геометрия Машиностроительное черчение

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Определение взаимного положения прямой линии и плоскости

    Задание: найти точку пересечения проецирующей прямой т с плоскостью (АВС) (рис. 7.3).

    Определение взаимного положения прямой линии и плоскости

    Решение: из чертежа видно, что плоскость, заданная треугольником ABC, занимает общее положение относительно плоскостей проекции, прямая т является горизонтально проецирующей, т.Сразу определяется горизонтальная проекция k1 искомой точки пересечения прямой т с плоскостью . Для нахождения фронтальной проекции К2 точки в плоскости треугольника ABC проводится вспомогательная прямая 1-2. В пересечении её фронтальной проекции 11-22 с фронтальной проекцией прямой т находят фронтальную проекцию К2 искомой точки К. Конические зубчатые передачи Во многих машинах осуществление требуемых движений механизмов связано с необходимостью передать вращение с одного вала на другой при условии, что оси этих валов либо пересекаются, либо скрещиваются. В таких случаях применяют соответственно или коническую, или гиперболоидную зубчатую передачу. Аксоидами колес первой являются конусы, аксоидами колес второй –– однополостные гиперболоиды. Обе передачи относятся к категории пространственных механизмов. Изложению основ их синтеза (геометрического расчета) по заданному передаточному отношению посвящена данная глава.

    Задание: найти точку пересечения прямой т общего положения с плоскостью общего положения (ABC) (рис. 7.4).

    Задание: найти точку пересечения прямой т общего положения с плоскостью общего положения

    Решение: в данной задаче прямая т и плоскость  занимают общее положение относительно плоскостей проекции. Задача решается по следующей схеме:

    прямую т заключают в плоскость . В данной задаче  , то есть является горизонтально проецирующей;

    находят линию 1-2 пересечения плоскостей  (АВС) и ;

    определяют точку К пересечения прямой т с плоскостью  в пересечении прямых 1-2 и т.

    Видимость прямой т относительно плоскости S определяется с помощью конкурирующих точек.

    Для определения видимости на горизонтальной проекции выбирается пара точек 1 и 3. У этих точек координаты у одинаковы (), координаты z различны (), точка 1 выше точки 3.

    Следовательно, на горизонтальной проекции левее точки k1 прямая т находится под плоскостью треугольника ABC, то есть должна быть проведена штриховой линией.

    Для определения видимости на фронтальной проекции можно воспользоваться парой точек 4 и 5 и рассмотреть их аналогично паре точек 1 и 3.

    Параллельность прямой и плоскости

    Прямая и плоскость параллельны, если в плоскости имеется прямая, параллельная заданной прямой.

    Задание: построить проекции прямой, проходящей через точку А и параллельной прямой т, принадлежащей плоскости  (BCD) (рис. 7.5).

    Задание: построить проекции прямой, проходящей через точку А и

    Решение: в условии задачи задана фронтальная проекция m2 прямой m. Поэтому необходимо вначале найти горизонтальную проекцию m1 прямой m. Условия параллельности прямой и плоскости: прямая параллельна плоскости, если она параллельна какой-то прямой, расположенной в данной плоскости.

    Используя это условие, строят проекции искомой прямой, проходящие через точку А; п1 проводится параллельно т1, n2 — параллельно m2.

    Примеры выполнения технических чертежей