Начертательная геометрия Машиностроительное черчение

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Определение взаимного положения прямой линии и плоскости

    Прямая линия и плоскость в пространстве относительно друг друга могут занимать следующие положения:

    прямая линия параллельна плоскости (частный случай — прямая лежит в плоскости);

    прямая линия пересекается с плоскостью (частный случай —прямая перпендикулярна к плоскости).

    Иногда на чертеже нельзя непосредственно установить положение прямой линии т и плоскости  (рис. 7.1). Передачи Новикова М.Л. Новикову удалось открыть принципиально новый класс пространственных зацеплений с точечным контактом для передач с параллельными, пересекающимися и перекрещивающимися осями.

    Определение взаимного положения прямой линии и плоскости

    В этом случае прибегают к некоторым вспомогательным построениям. В результате данных построений от вопроса о взаимном положении прямой линии и плоскости переходят к вопросу о взаимном положении двух прямых линий. В задачах этого типа используют метод вспомогательной плоскости. Заключается он в следующем:

    - через данную прямую т проводят вспомогательную плоскость . Подбор вспомогательной плоскости производится таким образом, чтобы решение задачи было наиболее простым;

    строят линию я пересечения плоскостей - заданной  и вспомогательной А;

    устанавливают взаимное положение прямой т и линии пересечения плоскостей п.

    При этом возможны следующие случаи:

    прямая т параллельна прямой я, следовательно, прямая т параллельна плоскости ;

    прямая т пересекает прямую я, следовательно, прямая т пересекает плоскость .

    Пересечение прямой линии и плоскости

    Если одна из пересекающихся фигур занимает проецирующее положение, то точка пересечения находится значительно проще.

    Задание: найти точку пересечения прямой m с проецирующей плоскостью   (рис. 7.2).

    Задание: найти точку пересечения прямой m с проецирующей плоскостью

    Решение: проанализировав чертеж, легко заметить, что плоскость   занимает проецирующее положение (плоскость  перпендикулярна к плоскости П2.)

    Сразу определяется фронтальная проекция К2 точки пересечения прямой m с плоскостью S. Горизонтальная проекция K1 искомой точки находится с помощью линии связи на горизонтальной проекции прямой т1. На плоскость П2 плоскость   проецируется в линию, совпадающую с фронтальным следом 2, значит, прямая видима по обе стороны от следа 2.

    При определении видимости прямой на горизонтальной проекции необходимо установить, какой участок прямой находится над плоскостью , т.е. будет видимым на горизонтальной проекции. Таким участком является луч, расположенный левее точки К.

    Примеры выполнения технических чертежей