Начертательная геометрия Машиностроительное черчение

Типовик
Расчет цепей

Физика

Интегралы
На главную

Задание прямой в пространстве

Любая прямая в пространстве может быть задана:

двумя точками, принадлежащими этой прямой;

одной точкой, принадлежащей данной прямой, и ее направлением.

В первом случае задаются координаты двух заданных точек, во втором — координаты одной точки и направление прямой.

Положение прямой в пространстве

Положение прямой в пространстве оценивается расположением ее относительно трех плоскостей проекций. При этом возможны следующие варианты.

Прямая не параллельна ни одной из плоскостей проекций. Такую прямую называют прямой общего положения (рис. 4.1). Все точки прямой имеют различные координаты х, у, z, и ее проекции не параллельны осям проекций х, у, z.

Задание прямой в пространстве

Прямая параллельна одной из плоскостей проекций. Все точки прямой имеют одну постоянную координату x:, y или z. При этом одна из проекций прямой параллельна какой-то оси проекции. Такую прямую называют линией уровня (рис. 4.2).

Прямая параллельна одной из плоскостей проекций

На рис. 4.2, а прямая а параллельна плоскости П1, в этом случае ее фронтальная проекция а2 параллельна оси х, координата z для всех точек прямой постоянна.

На рисунке 4.2, б прямая b параллельна плоскости П2, в этом случае ее горизонтальная проекция а2 параллельна оси x:, координата у для всех точек постоянна.

На рисунке 4.2, в прямая с параллельна плоскости П3, в этом случае ее горизонтальная проекция с1 параллельна оси у, фронтальная проекция с2 параллельна оси z, координата x для всех точек прямой постоянна. Данную прямую в системе плоскостей проекций П2/П1 следует задавать проекциями отрезка АВ.

Энергетика

Черчение