Машиностроительное черчение

Начертательная геометрия
  • Длина изображения отрезка
  • Комплексный чертеж на примере изображения точки
  • Комплексный чертеж точки
  • Законы проекционной связина комплексном чертеже
  • На комплексном чертеже – произвольная точка
  • провести линию связи
  • Способы задания геометрических фигур
  • Основные геометрические фигуры
  • проецирующие прямые и плоскости
  • Кривая линия общего вида
  • Поверхность вращения
  • Взаимопринадлежность геометрических фигур
  • Точка на линии
  • Прямая и точка на плоскости
  • Точка и линия на поверхности.
  • При построении линии на поверхности
  • Пересечение геометрических фигур
  • В рассмотренных примерах определение видимости
  • Построить сечение пирамиды
  • Пересечение геометрических фигур с привлечением посредников
  • Метод проецирующих секущих плоскостей
  • Построить линию пересечения плоскостей
  • Построить линию пересечения закрытого тора и полусферы
  • Метод концентрических сфер
  • Частный случай теоремы Г.Монжа
  • Преобразование комплексного чертежа
  • При построении новой проекции точки
  • Способ вращения вокруг проецирующей прямой
  • Способ прямоугольного треугольника
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямых и плоскостей
  • Линия наибольшего наклонана плоскости
  • Классификация метрических задач
  • способ замены плоскостей проекций
  • Стандартная ортогональная аксонометрия
  • Окружность в аксонометрии
  • Чертежи
  • Метод центрального проецирования
  • Проецирование точки на две и три плоскости проекций
  • Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства
  • Задание прямой в пространстве
  • Такую прямую называют проецирующей прямой
  • Следом прямой называется точка пересечения прямой с плоскостью проекции.
  • Взаимное положение прямых в пространстве
  • Задание плоскости
  • Положение плоскости относительно плоскостей проекций
  • Замена плоскостей проекций
  • Признаки принадлежности точки и прямой плоскости
  • Взаимное положение двух плоскостей
  • Определение взаимного положения прямой линии и плоскости
  • Найти точку пересечения проецирующей прямой с плоскостью
  • Прямая линия, перпендикулярная к плоскости
  • Задание: опустить перпендикуляр
  • Вращение вокруг проецирующей оси
  • Метод плоскопараллельного перемещения
  • Метод вращения вокруг линии уровня
  • Метод совмещения плоскостей
  • Определить натуральную величину треугольника
  • Решение  методом плоскопараллельного перемещения
  • Решение методом вращения вокруг линии уровня
  • Для решения задачи методом совмещения
  • Сечение многогранников плоскостью
  • Задание: определить сечение трёхгранной призмы плоскостью
  • Поверхность вращения общего вида .
  • Условные развертки
  • Задание: построить проекции и натуральную величину фигуры
  • Задание: построить проекции фигурысечения сферы плоскостью
  • Пересечение прямой линии с поверхностью
  • Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра
  • Перевод секущей прямой в частное положение
  • Построение линии пересечения поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод эксцентрических сфер
  • Изображение предметов
  • Виды
  • Дополнительный вид
  • Выносной элемент
  • Классификация разрезов
  • Соединение части вида и части разреза
  • Обозначение разрезов
  • Расположение сечений
  • Построение проекций точек, расположенных на различных поверхностях
  • Правильная  треугольная призма
  • Конус  вращения
  • Конус, сфера и  тор
  • Построение проекций
  • Аксонометрические проекции
  • Для построения аксонометрической проекции
  • Последовательность выполнения изображений в аксонометрии
  • Задача. Построение трёх изображений и аксонометрической проекции
  • ГОСТ 2.307-68
  • Выполнение ломаного разреза
  • Выполнение ступенчатого разреза
  • Особенности  нанесения размеров на чертежах литых деталей
  • Построение рабочего чертежа вала по аксонометрическому изображению
  • Пересечение геометрических фигур с привлечением посредников

    Сложнее решаются задачи на пересечение геометрических фигур, если ни одна из них не является проецирующей. В таких случаях трудно обойтись без привлечения третьих участников пересечения – так называемых посредников. В виде проецирующих секущих плоскостей или секущих сфер, соосных с заданными поверхностями вращения. При этом, все разнообразие подобных задач решается на основе единого алгоритма, необходимый объем которого может быть максимально полным или практически доведенным до нуля.

    Рассмотрим наиболее общий случай: пересечение криволинейных поверхностей, например,   и . ( Рис.41):

    Пересечение геометрических фигур с привлечением посредников

    1). Пусть поверхности  и  пересекаются по некоторой линии: .

    2). Всякая линия задается точками. Зададим линию ℓ в виде объединения n-ого количества текущих точек .

    3). Любая точка на чертеже должна быть задана двумя пересекающимися линиями. Пусть для текущей точки  это будут две линии: одна на поверхности Δ, другая – на поверхности

    4). Посредник пересекает заданные поверхности по двум линиям, а линии пересекаются в точке, принадлежащей искомой линии пересечения поверхностей. То есть:   и , , .

    Последняя череда рассуждений и отражает содержание алгоритма решения задач на пересечение геометрических фигур с привлечением посредников в полном объеме. От чего зависит объем алгоритма, показано на Рис.42.

    Для плоскостей необходимо меньшее число посредников, чем для пересечения криволинейных поверхностей.

    Если одна из фигур задается каркасом, то посредники следует проводить через его элементы. В этом случае алгоритм решения сокращается на одну позицию. Поскольку каждый элемент каркаса используется в качестве одной из двух вспомогательных линий.

    При вырождении одной из поверхностей в линию алгоритм сокращается еще на одну строчку. Единственный посредник проводится через эту линию, которая играет теперь роль одной из двух вспомогательных линий. И еще. Поскольку результат пересечения – точка, то отпадает позиция объединения точек. 

    И, наконец, пересечение 2-х линий вообще не требует применения посредников. Роль вспомогательных линий играют сами пересекающиеся линии.

    Роль вспомогательных линий играют сами пересекающиеся линии

    Каковы же требования к самим посредникам? Посредники выбираются из таких сообщений, чтобы они пересекали заданные поверхности с минимальным объемом графических построений. То есть пересекали поверхность по линиям с простыми проекциями:

    В виде прямых и окружностей

    В виде прямых и окружностей. Такими возможностями обладают проецирующие плоскости и цилиндрические поверхности тоже с вырожденными проекциями. И не только они. Такими возможностями обладают секущие сферы, с центрами на осях пересекающихся поверхностей вращения.

     Справедливость такого утверждения основана на теореме о пересечении соосных поверхностей вращения(Рис.43): “Соосные поверхности вращения пересекаются по окружности, поскольку любая общая для них точка  при вращении образует общую для этих поверхностей окружность”. В частном положении окружность проецируется в простые линии.

     

    Примеры выполнения технических чертежей